# Integrating Economics and Biology in the Assessment of Risk of Invasive Species

Economics of Invasive Species USDA 13 May 2003

J Shogren
University of Wyoming

## View toward modeling

- Risks to people and nature are endogenous
- Human and natural systems are intertwined
- Combine the economic approach of constrained optimization with biological constraints
- Humans maximize total benefits of the ecosystem, including ecological products, given budget limitations and biological constraints of the ecosystem

## Two Examples of Bioeconomic Risk Assessment

Cutthroat trout vs. Lake trout in Yellowstone Lake

Zebra mussels in the Great Lakes







## Yellowstone Lake example: Optimal Control Approach and STELLA Modeling

- The ecosystem model is a predator-prey model between lake trout and cutthroat trout, in which other species like grizzly bears and eagles also prey on cutthroat trout.
- Humans impact the ecosystem by reducing the population of cutthroat trout, which affects predators.
- National Park Service managers determine how to allocate the park's limited budget and how to manage the visitors to the park.



Figure 1. Diagram of Integrated Model of Yellowstone Lake

## Does integration matter for risk assessment?



Table 1: Steady state population of cutthroat trout across scenarios From Settle and Shogren, 2002, *AJAE* 

## Does integration matter for policy?

- Forget the fish, fix the roads
- Visitor preferences lean heavily toward viewing the core attractions not saving cutthroat trout

### 2000 Zebra Mussel Distribution



= confirmed zebra mussel sightings from 1988 to 2000

## Zebra Mussels: Stochastic Dynamic Programming

Society would derive a net benefit of
 \$\_\_\_\_ from investing up to
 \$\_\_\_ in Prevention versus
 \$\_\_\_ Control?

## Central questions for a bioeconomic evaluation

- 1) Which are good habitats for zebra mussels?
- 2) Pathways for zebra mussels to new habitats?
- 3) At-risk commercial & environmental goods & services? Market costs if zebra mussels become abundant?
- 4) Costs & effectiveness of prevention strategies?
- 5) What would be the most cost-effective level of investment in prevention and control?

### **Conceptual Approach**



(From Leung et al. 2002, *Proc. Biological Sciences*)

### Model Structure: Modules, functions, interfaces

## Stochastic Dynamic Programming memorize states, optimize strategies Future social welfare Cost-Benefit &

#### **Abundance**

Growth models, age structure, seasonality.

Control strategies.

Convert to discrete states.

## Current population info &

Prob. matrix future population info

strategy

#### **Economics**

strategy

Calculate optimal labor, capital, NIS impact, production, non-market valuation, cost-benefit.

### Transport & Establishment

Analysis of life history traits, propagule pressure, Allee effects.

Prevention strategies.

Prob. Matrix future spread

Current spread & strategy

Prob.

invade &

strategy

#### **Spread**

Diffusion models, gravity models Control strategies Convert to discrete states.

## The Value of Prevention: What's it worth to keep zebra mussels out of the next lake?

Up to \$324,000 per year per lake to prevent invasion—to protect power plants alone.



For comparison, in FY2001, the USFWS distributed to the States \$825,000 in response to all aquatic invasive species in all lakes in all states.

(From Leung et al. 2002, Proc. Biological Sciences)

## 100th Meridian Initiative

### 2000 Zebra Mussel Distribution



= confirmed zebra mussel sightings from 1988 to 2000

## Other approaches

Bioeconomic General Equilibrium models [John Tschirhart and David Finnoff]

Bioeconomic Stopping problems and Real options theory [Jean-Daniel Saphores]

## What matters in Integration

- Feedback loops
- Opportunity costs
- Biological thresholds
- Self-protection (prevention/mitigation)
- Self-insurance (control/adaptation)
- Preferences